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KINETICS OF HEAT TRANSFER TO A SPHERICAL PARTICLE 

FROM A RAREFIED PLASMA. 

3. MAXWELLIAN ION APPROXIMATION 

A. G. Gnedovets, A. V. Gusarov, and A. A. Uglov UDC 533.9 

The authors describe the kinetics of heat transfer to a spherical particle 
from a rarefied plasma with a Maxwellian velocity distribution of molecules, 
electrons, and ions. 

A material particle in a rarefied plasma experiences collisions with molecules, elec- 
trons, and ions, resulting in transfer of energy and charge. Plasma electrons recombine 
on the surface and are absorbed by the particle, and the ions are neutralized by electrons 
of the material and scattered by the particle surface in the same manner as are incident 
molecules of the plasma gas. It is important that due to the large difference in the thermal 
velocities of electrons and plasma ions the particle acquires a negative potential ~f < 0 
for which the electron and ion charge flux compensate each other, Je-(~f) = Ji-(~f)" During 
collisions of electrons and ions with the surface, besides kinetic energy the particle re- 
ceives energy of the charged states corresponding to the work function r and the effective 
ionization energy li-~ e. 

Computations of heat transfer between the particle and the plasma reduce to determining 
the number flux of plasma particles J~+ of each type and the kinetic energy Ej -+ transferred 
by them, from simultaneous solution o~ the kinetic Boltzmann--Vlasov equation for the velocity 
distribution function fj and the Poisson equation for the potential ~(r). The main complica- 
tions in solving the kinetic problem are linked to describing the motion of ions in the 
attractive field of a charged particle. This arises from the use of simplified distribution 
models, e.g., the cold ion [i] and the monoenergetic ion [2] approximations, used to describe 
heat transfer to a particle in [3, 4]. Therefore, it is of interest to analyze beat transfer 
to a spherical particle from a collisionless plasma at rest (s >> R) in the more realistic 
case when the ions, as well as the molecules and electrons, are subject to a Maxwellian 
velocity distribution in the unperturbed plasma region far from the particle: 

2~kT:~ ) exp . ( 1 )  
,. 2kT:~ 

For a diffuse law of scattering of molecules and neutralized ions by the particle sur- 
face in conditions when thermal-emission processes are not important, the relations for 
the heat flux qj = Qj/Ej ~ for each type of plasma particle in dimensionless form are as 
follows: 

q~ = I--%, ( 2 )  

l . _ _  q~=e;-+- /~w~, 
2 (3) 

(+ ) qi = eF -1- 1"}- ~'i - -  "cs , (4 )  
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Fig. i .  D i s t r i bu t i ons  of e f f e c t i v e  po ten t i a l  u i ( x )  fo r  v a r i -  
ous values of X and possible ~-% phase sPace configurations 
of plasma ions at different distances x from the particle: A i, 
B i) ions with trajectories intersecting and not intersecting 
the particle surface; boundaries of the regions: i) X = Gm(~); 
2) X = G~(~) = 2(~ + ~yf); 3) X = Gx(B) = 2(~ + ~y)/x ~. 

where j~- = j -/j 0; e~- = E~-/E~~ w~ = W~/kT4~; ~s = Ts/Th~; We = @e; Wi = li - -  @e; jj0 = 
Nj~(kTj~/2~mjJl/2~ Ej ~ Nj~Tj~2kTj~/~mjJl/2~ 

The electron fluxes are determined only by the particle potential yf = -e~f/kTe~ and 
are computed to be 

jF = exp (--Yl), e7 = e x p  (--y]). (5) 

The fluxes of charge and energy carried by the ions depend on the spatial distribution 
of potential in the plasma, determined by solving the Poisson equation. Reference [3] formu- 
lated the problem and gave relations for the distribution of electron density in the vicinity 
of the particle. 

The ion transport processes have been described from analysis of their possible trajec- 
tories in [2, 5], where the chosen integrals of the motion were the total energy ~ = (I/2)x 
mi(Vr2 + vt 2) + e~(r) and the momentum ~ = mirv t. The densities, ion fluxes, and the trans- 
ferred energy, as is true for any other macroscopic characteristics, are represented as 
moments of the distribution function over the "energy-momentum" phase space. The topology 
of the ~-X phase space is determined by the behavior of the effective potential ui(x) = 
--ry(x) + (I/2)x2x, which plays the role of a potential barrier for ions ($ = ~ /kTi~, X = 
~2/miR2kTi~, y = -e~/kTe~, x = R/r, T = To~/Ti~). In the ~-X phase plane one can identify 
two regions corresponding to ions of different classes: Ai, populated by ions whose trajec- 
tories intersect the particle surface; and Bi, populated by ions whose trajectories bypass 
the particle. The region boundaries are formed by the straight lines X = GI($) = 2($ + 
Tyf), X = Gx(~) = 2(~ + ~y)/x 2 and the curve X = Gm(~), determined by the position of the 
maximum effective potential and given parametrically as ~ = -Ty(x') + (i/2)x'2x, X = (~/ 
x')(dy/dx'). Two variants are possible, depending on the particle size and the nature of 
the spatial variation of electrostatic potential in the plasma: i) for any X the effective 
potential ui(x) has no more than one local extremum, a maximum; 2) no more than two extrema, 
a maximum and a minimum. The possible topological structures of the ~-X space and its rela- 
tionship to the distribution of the effective potential ui(x), in which X varies as a param- 
eter, are shown in Fig. i. 

The dimensionless distribution functions fi • = fi• 3/2] of the incident 
(v~ < 0) and reflected (v~ a 0) ions, as follows from the Boltzmann-Vlasov equation, are 
represented in the form fi- = nK~exp (-$), where the subscript K denotes the region of phase 

- - + = 0, space. Since the ions are neutralized on the surface, we have nAi = nBi = i, nAi 

nBi+ = i. Therefore, the dimensionless densities n i = Ni/Ni~ and fluxes Ji- and e i- are 
computed as: 

1 8 8  



y ~ X  2 

?' / i  - -  - -  (2:n) 3/2 
I.I v~ exp (--[3) d13dx 

A~-Bi [2 ([~ -t- "L'y) --  X2~] I/2 
(6)  

]7- = _11 ,! 5 exp (--13)d~d%, 
2 A z 

(7) 

where VAi = i, VBi = 2 .  

e F =  

I 
el- = -7-  J'A! (13 -~- "~y') exp (--13)d13dz, 

I n t e g r a t i o n  l eads  to  the  fo rmulas :  

n, (x) = F (130 - H~ (0, 13~) + H~ G ,  133, 

le = (1 + 131 + TYt) exp (--131) + -~- . I  G~ (~) exp (--13) d[~, 
0 

~*(13 + TF]) O,, ([~) exp (-.-13) d13. [1 + (1 -p [3 a + ~yl)Z] exp (--[31) + -41 

(8)  

( 9 )  

( i0) 

(11)  

Here 

F (13) = __1 eric (TV) 1/2 exp (TV) + 
2 

+ @  (1--x2)l/2erfc(13-~ T(Y--xaVl)l--x 2 )l/2exp(, "~(Y-- _~x z ) +  

+ all, 2 (~V) 1/2 exp(--13) 
1 .... x z , 

1 a 
H~ (a, b) -- - -  [2 (13 + zV) -. x2G~ (13)11/2 exp (-[3) d13. 

(2a) I /2 

The parameters Sx and $i are defined by the points of intersection (or tangency) of the 
curve Gm($) with the lines Gx($) and GI(~), respectively. 

In the computations it is convenient not to use integrals with respect to the energy 
~, but rather with respect to the spatial coordinate x' = R/r' Substitution by the variable 

= g(x') = -~y(x') + (i/2)~x'dy/dx' allows us finally to write, instead of Eqs. (9)-(11): 

n~ (x) = F (g (x0) - H~. (0, x . )  + H. .  (x. ,  x0,  (12)  

]7 = (1 + g (x~) + *Yl) exp (--g (xl)) + 

41 "r~"i' lX' dx'dY " d a y  dy ) + ( x' exp (--g (x')) dx', ( 13 ) 
, dx '~ dx' 

eT = [1 + (1 + g (x 0 + "cy~) 21 exp (--g (xO) + 

1 z2 !. Ix" #Y )[g(x')+ 
+ --8 x' dx' dx" dx" 

zyt] exp (--g (x')) dx', 
(14) 

where 

Hx,(a, b)--  ~z jb( dZy dy ) [  ] x' 2 [ y ( x ) - - y ( x ' ) ] +  (x'~--xD @ ~/2 
2 (2zO 1 / 2 a dx'~ dx' x' dx' exp (--g (x')) dx'. 

The limits of integration in Eqs. (9)-(14) are determined as follows: ~i = g(xl); ~x = 
g(x,); x I and x, are the smallest roots of the equations (i - x'2)dy/dx ' = 2x'[yf - y(x')], 
(x 2 - x'2)dy/dx ' = 2x'[y(x) -- y(x')], written relative to x', respectively. 
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Fig. 2. Spatial distributions: a) of the potential y/yf; 
b) of densities of charge carriers n~ in the particle vicinity 
in a one-temperature (T = i) argon plasma; va~es of n i are 
the top branches of the density curves, and n e are the lower; 
the solid lines are Maxwell ions, and the broken lines are 
monoenergetic ions; i) x D = i, yf = 4.04 (4.15); 2) 0.i and 
4.51 (4.51); 3) 0.01 and 5.00 (5.02). The values in brackets 
are the particle potential in the monoenergetic ion approxi- 
mation. 

The spatial potential distribution y = y(x) is found numerically by the method of succes- 
sive approximations, in an analogous way to what was done in [5]. The iterative process 
is built on the scheme 

YN+! = alYN+I -~ (I ..... ~I) YN' ( 1 5 )  

Here YN+I is the soluton of the Poisson equation 

d2gN~ 1 1 ( 16 ) 

dx  ~ X D  X ~  " 

w i t h  t h e  b o u n d a r y  c o n d i t i o n s  

l / 0  
VN+l ( 0 ) =  O, VN+I (1) = gN(1) + e~ [(z/~) - 7~ , - -  ]~] ,  ( 1 7 )  

w h e r e  ~ = m e / m i ,  x D = rD/R , r D = ( k T e ~ / 4 ~ e 2 N e ~ )  x/2 The p a r a m e t e r s  ~1 and ~2 a r e  c h o s e n  
so as to make the iterative process converge. The densities n. N and fluxes JjN- are found 
by substituting YN into Eqs. (12) and (13) for ions and into t~e corresponding expressions 
for electrons [3]. As an initial approximation we can use an arbitrary monotonic increasing 
function y0(x) satisfying the boundary condition y0(0) = 0. The boundary condition (17) 
on the particle surface (x = i) is assigned such that equality is established during the 
iterative process between the electron and ion fluxes 

] 7  = (~/~)1/2 iF. ( 1 8 )  

Figures 2 and 3 show results of numerical computations of the processes of transfer 
of charge and energy to a spherical particle in a one-temperature (T = Te~/Ti~ = i) argon 
plasma for the Maxwell ion approximation, compared with data obtained for monoenergetic 
ions [4]. The influence of screening properties of the plasma on the spatial distribution 
of potential and charge carrier densities is shown in Fig. 2. Figure 3 shows the dependence 
on the Debye screening parameter x D = rD/R of the dimensionless particle floating potential 
yf = -e~f/kTe~ and the fluxes of charge jj* = Jj-/J* and energy ej* = Ej-/E* of the electrons 

and ions [J* = Ne~(kTe~/2~mi )z/2, E* = Ne~kTe~(2kTe~/~mi)i/2]. An increase of x D leads 
to stronger penetration of the electric field of the charged particle into the plasma and 
to growth of the flux of attracted ions. Since the total flux of charge to the particle 
must remain equal to zero, the floating particle potential falls in absolute value, to achieve 
the required increase of electron flux. The fluxes of energy transferred by electrons and 
ions also increase here. 

In a region with Debye radii that are very small or large compared with the particle 
size the electron and ion fluxes are weakly connected with the nature of the spatial varia- 
tion of potential in the plasma and are determined only by the particle floating potential. 
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Fig. 3. Dependences of the dimensionless particle floating 
potential yf and of the fluxes of charge jj* and energy ej* 

of electrons and ions of a one-temperature argon plasma (~ = 
i) on the Debye screening parameter (x D = rD/R): the solid 
lines are Maxwell ions, and the broken lines are monoenerge- 
tic ions; the horizontal lines are limiting values in a 
strongly screened and weakly screened plasma: i) yf; 2) 

Ji* = Je* = ee*; 3) ei*. 

The first case corresponds to a regime of strong plasma screening (a particle with a thin 
layer of space charge), and the second case corresponds to a regime of weak screening (parti- 
cle with a thick layer of space charge). In both cases the particle potential and the charge 
and energy fluxes are practically independent of the Debye screening parameter x D. In these 
limiting regimes for the Maxwell ion approximation one can obtain the analytical relations 

l? = j r  = e ~  = 1,,'~'I2 e? - -  @/2 ~ T y !  , y f = - -  2 

-- for strong screening (x D << i); 

e * -  1 @/_9 

1 (1 + ~y;), 

! i 2] 
- -  1-6~YI-F--~-(~Fj) , e x p ( - - Y j ) = ( ~ / ~ ) l / = ( l - } - z Y l )  

- for weak screening (x D e i). 

In a one-temperature argon plasma (T = i) for the Maxwell ion approximation the limit- 
ing values listed are: yf = 5.60; ee*~ = i; ei* = 3.80 for x D << 1 and yf = 3.99; ee* 
4.99; ei* = 12.95 for x D e i. 

The results of calculated heat transfer from the plasma to the particle, obtained for 
Maxwell ions and for the simplified approximation of monoenergetic ions [4] are quite close. 
The dependences of the particle potential and the fluxes on Debye radius in the Maxwell 
ion case are smoother, and there are no bends on the corresponding curves, which results 
from allowing thermal scatter of the plasma ion velocities. The differences between the 
intensities of the electron and ion fluxes computed with the two ion distribution models 
are more noticeable in the weak screening region (x D e i), but do not exceed -15% for T = i. 
Therefore, for preliminary calculations one can use the less laborious approximation of mono- 
energetic ions, for which the Poisson equations reduce to an ordinary differential equation, 
not to an integrodifferential one, as it does in the ion model considered with Maxwellian 
velocity distribution. 

The analysis performed shows that the heat transfer is substantially influenced by 
the charge transfer process, particle electrification, and the nature of the screening of 
the particle electric field by the plasma. Since qi + (~/D)i/2qe >> q a = i, the contribution 
of electrons and ions to the total heat balance is considerable, even in a plasma with a low 
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ionization level. The role of plasma processes in the heat transfer is more apparent for 
particles of small size (R < r D) because of the strong influence of the local particle elec- 
tric field on the motion of the electrons and ions. 

NOTATION 

e, charge of the electron; ~ , total energy; Ej • flux density of kinetic energy; Ii, 

ionization energy; Jj• number flux density of particles in the plasma; k, Boltzmann con- 

stant; ~j, mean free path; mj, mass; Nj, computed number density; p, pressure; Qj, heat 

flux; r, spatial coordinate; rD, Debye radius; R, particle radius; Tj, temperature; ~, plasma 

potential; ~f, particle floating potential; Ce, electron work function; ~, momentum. Sub- 
scripts: a, molecules; e, electrons; i, ions; h, heavy plasma particles (molecules and 
ions); r, radial component; s, surface; t, tangential component; ~, unperturbed plasma region 
far from the particle; +(-), direction away from (toward) the particle. 

1. 
2. 
3. 
4. 
5. 
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ENERGY CHARACTERISTICS OF A SOLID-STATE LASER PUMPED 

BY EMISSION FROM A CUMULATIVE JET 

M. Kh. Vergasov, A. F. Leonov, N. A. Makarovets, 
and Yu. A. Torfimov 

UDC 662.017.224.2 

Optical pumping of solid-state lasers by strong shock waves formed during gas 
cumulation is shown to be feasible. 

The possibility in principle of using strong shock waves in gases as a high-temperature 
high-power radiator was substantiated long ago. High radiation fluxes in small devices 
can be obtained by using condensed explosives (EXP) to produce strong shock waves in dense 
gases. 

Explosive charges in a cylindrical cumulative channel are used to obtain strong shock 
waves in gases. A cumulative jet in the channel of such charges is formed when the detona- 
tion products collapse (gas cumulation). 

It was shown in [I] that the jet velocity u is related to the detonation velocity v by 

n---- ~ - ( x - 1 )  ~ +  n 2 ~  , y + l  (Y §  Po x ~ , ( 1 )  

where x = u/v; P0 is the initial gas density; and P = AO n. 

The given solution gives a fairly correct description of the detonation processes in 
a charge of limited size. After initiation the detonation wave reaches the bottom of the 
charge channel and initiates a shock wave in the gas. As a result of the subsequent collapse 
of the detonation products a jet leading the detonation front is formed in the channel. The 
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